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ABSTRACT

Investigation of the response of a complex composed of a number of
coupled harmonic oscillators is conducted. One of the harmonic oscillators
is designated as the master, the others as satellites. The expression for the
loss factor of the coupled master harmonic oscillator is sought. Two
distinct loss factors are defined; the prevailing loss factor and the effective
loss factor. The first is defined iu terms of the real part of the inverse of the
normalized insitu admittance of the master harmonic oscillator. The second
is defined in terms of the ratio of the normalized input power into the master
harmonic oscillator to the normalized stored energy in the complex due to
that power injection. The relationship and the contrast between these two
loss factors are revealed. Itis argued that, with the exception of an isolated
master harmonic oscillator, the prevailing loss factor is apparent; it is the
effective loss factor that is real. Whereas the prevailing loss factor invokes
the question: “Where did the energy go?,” the effective loss factor renders
this question moot.

Under certain approximations, expressions for the effective loss
factor are derived, in this report, which are reminiscent of an expression that
was recently derived for the effective loss factor of a structural fuzzy. The
latter expression was derived via statistical energy analysis (SEA).



1.0 INTRODUCTION
A number of questions seem to arise regarding the simplest of interactions; those

among harmonic oscillators. The significance of these questions lies in the fact that
they bear directly on questions relating to the statistical energy analysis (SEA) and
structural fuzzies. SEA and, to some extent, the structural fuzzies are based on analogous
interactions [1-5]. In this report these interactions are investigated for their own sake; SEA
and structural fuzzies are only obliquely involved. In particular, two loss factors are
defined for a complex that is composed of a number of harmonic oscillators. In this
complex, one of the harmonic oscillators is designated as the master and the others are
designated as satellites. The loss factors pertain to the master harmonic oscillator which
is the only one to be externally driven; the responses of the satellite harmonic oscillators
result only from their direct and/or indirect couplings to the master harmonic oscillator. It
is argued that a prevailing loss factor can be defined from the normalized insitu
admittance of the master harmonic oscillator. This loss factor is an apparent loss factor in
the sense that it often raises the eternal question as to where the energy went? In a real loss
factor this question is moot. With this in mind, an effective loss factor is defined as the
ratio of the normalized input power imparted into the master harmonic oscillator by the
external drive to the normalized stored energy in the complex. This stored energy
includes not only the stored energies in all the harmonic oscillators, but also the stored
energies in all the couplings among these harmonic oscillators. Unlike the prevailing loss
factor, this effective loss factor is a real loss factor, notwithstanding the obvious identity
of the two loss factors for an isolated master harmonic oscillator at resonance.

In this report the theoretical background is established and a few questions are
analytically posed and answered. In order to simplify the answers, the analytical generality
is curtailed in that the satellite harmonic oscillators are allowed to be coupled only to the
master harmonic oscillator, but not to each other. Moreover, mass and gyroscopic

coupling parameters are also removed, at this stage, in order to further simplify the



analytical descriptions. A cell of satellite harmonic oscillators is defined and used to derive
expressions for the prevailing and effective loss factors for a cell hosting either a single or
multiple satellite harmonic oscillators. In the latter case primitive statistical averaging are
performed to replace a summation by a single term. The expressions that are derived,
thereby, for the effective loss factor are reminiscent of the expression that is derived via
SEA for the effective loss factor of a structural fuzzy [6]. Detailed investigations, beyond
the determinations of the prevailing and effective loss factors, as performed in this report,

are deferred to companion reports that are under preparation.



II. EQUATION OF MOTION OF A COMPLEX COMPOSED OF A NUMBER
OF COUPLED HARMONIC OSCILLATORS

The equation of motion may be stated in the matrix form
Z(w) V(o) = F(o); V(o) = {V;(®)} ;
F(w) = {F(0)}; Z(w) = (Zj(®) , (1a)

where Vj () is the response and Pej (w) is the external drive that is applied to the (j)th
harmonic oscillator and the element Z ji(w) in the impedance matrix describes the
coupling between the (i)th and the (j)th harmonic oscillators; the self-impedance element
Z i (w) describes the insitu impedance of the (j)th harmonic oscillator and, finally,

g(w) is a square matrix of rank (N), (N) being the number of harmonic oscillator in the
complex [7]. A model of such a complex is sketched in Fig. 1 [1,8]. The elements in the

impedance matrix can be explicitly stated in the form

Z) = (Z;(@) 8 + Zy@) A-55);

N
Zy@ = X Z5(0) Zo(@) = lio My, + (0)'K;,] = Zj@);
My, = My ; Kjn = Kyj s Kj, = Kj(+ing,) , (22)
4



Zy() = [Zj(@) - Gy@]; Zj@) = (oM - (0) K;l;

Gji((l)) _Gij(w); Z}i(w) = Zji(w)lG(w)=0 = Z;]:(w) ) (2b)

and these elements are required to satisfy the conditions
Re {Z7.(0) + Z}(0)} =0 Im{Z - Z} = 0 (2¢)
Ji i >0° Ji i ’

where Re { } and Im { } are the real and imaginary parts of the enclosed quantities [1].
In Eq. (2), K i and M i describe the stiffness and the mass parameters of the (j)th
harmonic oscillator, respectively, whereas K i M i and G ﬁ(a)) describe, respectively,
the stiffness, the mass and the gyroscopic coupling parameters that are associated with the
coupling between the (i)th and the (j)th harmonic oscillators, and the equality sign in the
first of Eq. (2¢) implies that the coupling is a conservative coupling [1]. Itis noted, in
this connection, that in this report the dampings are attributed to the stiffness parameters
and the degree of damping in a stiffness parameter is assessed in terms of an individual loss
factor; (n jj) for the (j)th harmonic oscillator and (7] ji) for the coupling between the
()th and the (j)th harmonic oscillators. Before trying to interpret these individual loss
factors, it is convenient to designate one of the harmonic oscillators as the master and the
remaining harmonic oscillators in the complex are designated as satellites. [cf. Fig. 1.] In

addition, it is convenient to place the master harmonic oscillator (1)st and then to normalize

Eq. (1a) in the form

Z(@) V(o) = R(0); V(@) = {Vj(@)};
F(@) = {F;(®)}; Z) = (Z;) , (1b)
5



where
V(@) = [V, @)1 V,]; Py(@) = [By(@) Py(@)] ;
Vo(@) = [Fy(@) /(@ Myy)] ; Zji(w) = [Zji(w)/(w Ml., 3

and, from Eq. (2), it follows that

N
Z;@) = nzzl Zy(@) ; Z (@) = M, - (a)nj/(o)2 A+in,)] ;

A_/"nj = (Mnj/Mll) > (012~n = (K;')n/Mu) s (4a)
Zji(w) = [Z;(CD) - _G—ji(w)] ) —G—ji(a)) = —C_;-U(CD) >
oj = (K5 /M) ; G;i(@) = [G(@) (o My)] . (4b)

To introduce some versatility in the description of the mechanism of damping in the
harmonic oscillators and the couplings, the individual loss factors (1] jj) and (0 ji) may be
elaborated upon in the forms

172
)

v o
My = M+ (@7@y) (M) mg (52)



My = My + (Cl)/wji) (wij/a)u) 77?,‘ . (5b)

In computations that are perfbrmed in companion reports, either (7] jj) and (] ji) are
constants, independent of the frequency variable (@), and (njo-j) and (77]0',') are zeros or
vice versa. In the first choice, the damping is attributable to a response that is displacement
controlled; in the second, to a velocity controlled response.

Returning to Eq. (1b), it is recognized that this equation can be inverted in a

straightforward manner to yield
V(@) = Y(0) P(); Y(@) = (T@) = [Z@]" . ©

where Z(w) is the normalized admittance matrix. An investigative interest in Eq. (6)
involves, in this report, the definition of two significant loss factors; one is dubbed a
prevailing loss factor and the other an effective loss factor. These two loss factors are
defined in conjunction in order to emphasize the relationship and contrast between them; the
relationship and contrast are instructive. However, before embarking on these definitions,
it may be appropriate to pause at this stage and consider a few quadratic forms based on the

equation of motion as expressed either in Eq. (1b) or in Eq. (6).



III. QUADRATIC FORMS OF THE EQUATION OF MOTION
In the preceding section, the linear form of the equation of motion of a complex
composed of a number of coupled harmonic oscillators is described. For the sake of
completeness, a number of quadratic forms that stems directly from the linear equation of
motion are formally explored. In this vein, Eq. (6) may be manipulated, for example, to

yield the quadratic form

V) V') = ) ) F@] T, ™
where the superscript (T) indicates transposing and taking the complex conjugate of the
resulting matrix and/or vector [7]. [In this connection the taking of the complex conjugate
of a quantity is designated by the superscript (*).] A quadratic form, such as Eq. (7),

becomes useful if statistical measures can be beneficially imposed on some of the quantities

in the quadratized form. Thus, if the external drives are assumed to be uncorrelated, so that
(P(@) Bl@) = (1 B;@P) &;) = L), ®)
then Eq. (7) simplifies to read
V(@) V(@) = Y L@ Y@, ©)

where the angular brackets indicate that the enclosed quantity is appropriately averaged and,

significantly, I, (@) is a diagonal matrix.




Similarly, the equation of conservation of energy in the complex may be derived by

quadratizing Eq. (1b) in the form
[Z(») V@), V@) = R, V), (10)

and only the real part is retained, on both sides of Eq. (10).



IV. LOSS FACTORS:
A. OF AN ISOLATED MASTER HARMONIC OSCILLATOR

Although a loss factor is often used to prescribe a degree of damping, there are
several ways to define it. Unfortunately not all are either consistent or simply related to
each other. Thus, in Egs. (2) and (5), the individual loss factors (7] jj) and (1] ji) are
defined to be associated with the stiffness parameters of the individual harmonic oscillators
and the couplings among them. Although this definition is commonly used, it is seldom
scrutinized. This scrutiny is not pursued in this report either; these individual stiffness
controlled loss factors, in Eqgs. (2) and (5), are accepted, as such, apriori. It stands to
reason that these loss facfors govern the loss factors that are associated with the complex as
a whole.

To set the stage, the loss factors that relate to the isolated master harmonic oscillator

are defined first. For this case, Eq. (6) yields
(@) = %i(0) Py(o);
7@ ) = Py(w) =1, (11a)

where the superscript (0) indicates a reference to a master harmonic oscillator in isolation.

A prevailing loss factor 77;1 (@) may be defined, using Eq. (11a), in the form
0 _ 50 -1y . 0 2
NMp(@) = Re {[F;(@)] '} ; M@ = me, /o) . (123
In this definition, the resistance controlled part in the normalized impedance, that is derived

by inverting the normalized admittance Y,$ (@) of the isolated master harmonic oscillator,

is depicted as the loss factor. The prevailing loss factor ngl (@) may be alternately

10



defined. In this alternate definition, the normalized external input power 7T, (@) that is

imparted to the isolated master harmonic oscillator needs to be estimated. This estimate is

7o (@) = Re {[V°(@)] By}

= 1V%@)* Re ([}, (13a)

where the superscript (*) designates the complex conjugate of the bracketed quantity.
[cf. Eq. (7).] The normalized kinetic energy E,?l(a)) that is stored in the isolated

master harmonic oscillator is similarly estimated as
22 (@) = 1/2) 1w . (142)

The prevailing loss factor 7710)1 (), as defined in Eq. (12a), may be correspondingly
defined from Egs. (13a) and (14a). In this definition

no(@) = [T (@)/285(@)] = Re {[F]@)]"}, (15a)

and, therefore, it emerges that the prevailing loss factor ngl (w) stated in Eq. (12a) is
equivalent to that stated in Eq. (15a). [The normalization of the input power and stored
energy are effected in this report by 7, (@) and €,(®), respectively, where

7, (@) = 0e, (@) and £,(@) = My; |V, (@)I?, My, is the mass of the master
harmonic oscillator and V,,(®) is defined in Eq. (3).] If the factor (2), in the 2€ ]?l(a)), is
meant to account for the normalized potential energy EZI (@) that is stored in the
isolated master harmonic oscillator, then one may claim that Eq. (15a) is a proper attempt
to define a real loss factor. With that in mind, a loss factor ngl (@) of a sort may be

defined in the form

11



np (@) = [mh(@)/ &g (@)] 5
£2(w) = (1/2) 1% (@) [1+(w,/0)*], (16a)

where £/ (@) is the normalized stored energy in the isolated master harmonic oscillator
in response to the normalized external input power 72 (). Since the normalized stored
energy ?10 () is also the normalized total stored energy ?:g (@) in the complex, which in
this case is merely composed of the isolated master harmonic oscillator, the effective loss
factor N9, (@) for the isolated master harmonic oscillator equates with the loss factor

77!(7)1 (@) of a sort just defined in Eq. (16a). This effective loss factor is defined
na(@) = [rH(@)/El(@)] ; & = & (0) ;
nG(@) = %@ = 209 (@) [L+(@y /)T = 20,0y /0)* L+ /o)’ T,

(17a)
where use is made of Eqs (12a) through (16a). It follows that there is a direct relationship
between the effective loss factor ngl (w), the loss factor ngl(a)) of a sort, the prevailing
loss factor ngl () and, finally, the individual loss factor (7];,) of an isolated master
harmonic oscillator. At, and in the vicinity of the resonance frequency (@;;) of the master
harmonic oscillator in isolation, Eqs. (12a) and (17a) show that all four loss factors are

identical; namely

Ne(@) = N5 (@) = Npy(@) = My 5 (@ /0P =1. (182)

12




Since, in general, only in the vicinity of the resonance frequency does a loss factor assume
an appropriate significance, Eq. (18a) states that for a master harmonic oscillator in
isolation, the four loss factors are substantially identical. A consistency in the four
definitions of the loss factor is thus established in the case of an isolated harmonic

oscillator.

B. OF AMASTER HARMONIC OSCILLATOR WITH THE SATELLITE
HARMONIC OSCILLATORS BLOCKED

For this case, Eq. (6) yields

W) = K@ Fy);

[Fi@]" %) = Py =1, (11b)
where the superscript (b) indicates a reference to a master harmonic oscillator with the

satellite harmonic oscillators blocked. A prevailing loss factor nzl(a)) may be defined,

using Eq. (11b), in the form

no(®) = Re ([T (@]} ;

N
Mo (@) = 1y (@, /0)* + ]ZZ m; (@ | w)* . (12b)

In this definition, the resistance controlled part in the normalized impedance, that is derived

by inverting the normalized admittance 17;? (@) of the master harmonic oscillator with the

satellite harmonic oscillators blocked, is depicted as the loss factor. From Eqgs. (12a) and

13



(12b) one concludes that 77;1((0) < nf,l(a)), where the equality holds for conservative
couplings in which 7;; = 0. The prevailing loss factor n;l(a)) may be alternately
defined. In this alternate definition, the normalized external input power 7 :1 () thatis
imparted to the master harmonic oscillator with the satellite harmonic blocked needs to be

estimated. This estimate is

7 (@) = Re ([ ()] Py(o)]}

= I7P(@)? Re ([T}, (13b)

where the superscript (*) designates the complex conjugate of the bracketed quantity.
[cf. Eq. (7).] The normalized kinetic energy Ellc’l (@) that is stored in the master

harmonic oscillator with the satellite harmonic oscillators blocked is similarly estimated as
20 = 1/12) 1R . (14b)

The prevailing loss factor 17;’,1 (w), as defined in Eq. (12b), may be correspondingly
defined from Egs. (13b) and (14b). In this definition

nh(@) = [Fh(@)/ 28y (@)] = Re {[(Ri@)]}, (15b)

and, therefore, it emerges that the prevailing loss factor n;l(w) stated in Eq. (12b) is
equivalent to that stated in Eq. (15b). [Again, the normalization of the input power and
stored energy are effected in this report by 7, (@) and £,(@), respectively, where

7T, (0) = we, (@) and €,(0) = My 1V, () 2, M, is the mass of the master
harmonic oscillator and V,,(@) is defined in Eq. (3).] If the factor (2), in the 2?,,?1((0), is

meant to account for the normalized potential energy Ezl (@) that is stored in the master

14




harmonic oscillator with the satellite harmonic oscillators blocked, then one may claim that
Eq. (15b) is a proper attempt to define a real loss factor. With that in mind, a loss factor

nzl((o) of a sort may be defined in the form
(@) = FL@)/E @] nh@) = 20p) L+ /o)
gl(w) = (1/2) 1V2(@)P [1+(@y/0)’], (16b)

where é'f’ (w) is the normalized stored energy in the isolated master harmonic oscillator
in response to the normalized external input power 7'1:'31 (@). To define the effective loss
factor T]Zl(a)) for a complex in which the satellite harmonic oscillators are blocked, the
normalized total stored energy Etbl (@) of the complex needs to be estimated; one may
conclude that E"tbl (w) exceeds Elb (w) if energy can be stored in the couplings. This
normalized stored energy, under the condition that the satellite harmonic oscillators are

blocked, is designated E;’l (w). [1]. The effective loss factor ngl(a)) is then defined

k(@) = [Fy(@)/E5@)] ; nh@) = nh@i+ @)™ ;

N
Bl (@) = Bl)+E5(®) ; EL@) = (V@)1 12)Y My +(@,;/ 0)*] ;
Jj=2

(o) = [Eh(@)/E ()] > 0, (17b)

where use is made of Eq. (16b) and Eq. (12b) is noted.

15



From Egs. (12b) through (17b) one may deduce that

N
o) < b)) = nh@) = [y, /o) + Y mje; /)] ;
Jj=2

N
(@ 01)* + Y, (@ 10x)° =1 5 0z0, , (18b)
j=2

where the resonance frequency (@, ) relates to that of the master harmonic oscillator with
the satellite harmonic oscillators blocked; this master harmonic oscillator constitutes a
complex in which the satellite harmonic oscillators are held rigid. Clearly, the relationships
between the various loss factors in Eq. (18b) are not as simply consistent as are those
stated in Eq. (18a). In particular, it is noted that the prevailing loss factorr)zl (@), in the
vicinity of the resonance frequency (@, ), exaggerates the effective loss factor 7121 ().
The exaggeration stems from the fact that the prevailing loss factor nzl (w), by definition,
fails to account for the total stored energy; the stored energy in the complex transcends that
stored in the master harmonic oscillator. In the definition of the effective loss factor

ngl (@) the deficiency in accounting for the stored energy is rectified; in this definition the

total energy stored is properly accounted for.

16



V. DEFINITION OF THE PREVAILING AND EFFECTIVE LOSS FACTORS
The restriction that the master harmonic oscillator is either isolated or the satellite
harmonic oscillators are blocked is now removed; the couplings among the harmonic
oscillators that compose the complex are reinstituted and the satellite harmonic oscillators
are set free.

Using Eq. (6), the equation of motion for the master harmonic oscillator is
h@) = B Pa@); [Hi@)]" (@) = Py@) =1. 19

[cf. Eq. (11).] A prevailing loss factor 7],;(@) may be defined, using Eqg. (19), in the

form

Mp(@) = Re {[¥;(@)] '} . (20)

[cf. Eq. (12).] Again, in this definition the resistance controlled part in the normalized
insitu impedance of the master harmonic oscillator is depicted as the loss factor. In this
case too, an alternative definition for the prevailing loss factor 7] pl(m) may be proposed.
For this purpose, the normalized external input power 7T, (@) that is imparted to the

master harmonic oscillator needs to be estimated. This estimate is
Ta(@) = Re{[Vj(@)]" By@)} = (@) Re{[F@)]"}. D)

[cf. Eq. (13).] The normalized kinetic energy € kl(w) that is stored in the master

harmonic oscillator is similarly estimated as

£, (@) = 1/2) 1Vi(@)* . (22)

17



[cf. Eq. (14).] Employing Egs. (21) and (22) the prevailing loss factor, as defined in

Eq. (20), may be equivalently defined
Np(@) = [T (@)/ 28, (@)] = Re {[¥,(@)]7'} . (23)

[cf. Eq. (15).] Again, if the factor (2), in the 2&, (@), is intended to account for the
normalized potential energy €p; (@) that is stored in the master harmonic oscillator, then
one may claim that Eq. (23) is an attempt to give credence to the prevailing loss factor.

With that in mind, a loss factor 77, (@) of a sort may be defined in the form

N (@) = [T (@) E(@)] 5 Np(@) = Np(@) [28,(@)/E ()] ;
E(w) = (1/2) |V(@)? [1+(@, /)], (24)

where £, (@) is the normalized stored energy in the master harmonic oscillator in response
to the normalized external input power T,;(®@). [cf. Eq. (16).] As Eq. (24) states, the
loss factor 77, (@) of a sort is closely related to the prevailing loss factor pl(a)), as
defined in Eq. (23).

A question arises: Is either of the loss factors 7, (@) or 1y, (w) the appropriate
loss factor for the coupled master harmonic oscillator? The loss factors 77, (@) and
Ny, (@) are defined under the assumption that the external normalized input power T o (o)
that is imparted to the master harmonic oscillator is fully dissipated in this harmonic
oscillator. Clearly this is not the case when couplings are present. Although it is assumed
that only the master harmonic oscillator is driven externally, the satellite harmonic
oscillators, as well as the couplings, store energies by virtue of their direct and/or indirect
couplings to the master harmonic oscillator. These stored energies contribute to local

dissipations in these parts of the complex. The externally imparted normalized power TT¢,

18



is, therefore, only partially dissipated in the master harmonic oscillator, which is contrary
to the statements made in Egs. (23) and (24). In this sense the prevailing loss factor

n pl(w) and the loss factor 7, (@) of a sort are apparent rather than real. A realloss
factor of the master harmonic oscillator needs to account for the stored energies throughout
the complex; it is the dissipation of the normalized input power 7, (@) by the total
normalized stored energy &, (@) that yields the effective loss factor of the complex.

[cf. Eq. (17b).] Therefore, to define the effective loss factor, it becomes necessary to
estimate the normalized energy & (@) that is stored in the complex as a result of imparting
the normalized external input power 7, (@) into the master harmonic oscillator. Now that
the couplings are present, £, (@) accounts not only for the normalized stored energy
£,(®) in the master harmonic oscillator, but also for the normalized stored energy £, (@)
that resides in the couplings and in the satellite harmonic oscillators. To reflect the
multiplicity of the stored energies, the estimate of the normalized stored energy in the

complex is formally stated in the form

£ () = E(0) + Eq(@); Ex(@) = V(@) &4(w);

£(0) = TP @), Eq@) = 1@ g4(®);

- N =’ N N _

Eq(@) = Y, £;(@) + Z Y, g;i(@) (1- 50) (25)
j=2 j=t1 i=t

where | Vl(a)) 12 -((0) is the normalized stored energy in the (j)th harmonic oscillator
and | V() 12 ((D) (1-9; ) is the normalized stored energy residing in the coupling
between the (j)th and the (i)th harmonic oscillators. It follows from Eq. (25) that the

normalized stored energy g (@) is that of the complex as a whole excepting the
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normalized stored energy £,(®) in the master harmonic oscillator. Using Egs. (3), (4)

and (6), the components in Eq. (25) may be more explicitly stated in the form
= _ 2 TF 25 .
ej(a)) = (1/2) IClj(a))I [ij + (a)jj/a)) 1;
2 _ o . 7 —

g5(@) = (1/2) 1C;(@)P?

7 2 2 2
[Ml-jll + Cl-j(a))l + (a)ij/(o) 11 - Cij(w)l 1, (26b)

where

V(@) = V() ; C;(@) = [T (@) Fy(@)] @7)
and it is noted that the first of Eq. (19) is a specific case of the first of Eq. (27). Using
Eqs. (21) and (25), an effective loss factor 1), (@) can be properly and conventionally
defined in the form

Ner(®) = [T (W) E4(@)] , (28a)

and, using Eqs. (22) and (23), one further derives

Na(@) = Mp@/E @] Na(@) = My (@) L+{@] , (28b)
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where ¢ (@) is the ratio of the stored energy in the satellite harmonic oscillators and in the

couplings to the stored energy in the master harmonic oscillator; namely,
f(@) = [, (@) & (@)] = 0, (292)

and the relationship between the loss factor 17, () of a sort and the prevailing loss factor

npl(w) is
Mp(@) = My @) E@]; &) = 1/2) [+, /0)']. (30

[cf. Egs. (14) through (16) and (24).] It is noted that the equality sign in Eq. (29a)
occurs only when the master harmonic oscillator is rendered onto isolation. [cf. Eq. (17).]

Equation (28b) and the inequality in Eq. (29a) leads, in turn, to the inequality
Ney(@) < My (@) . (29b)

It is emphasized that the loss factors 7] pl(a)), 1, (@) and N1 (@) are, by definition,
ratios that are independent of the normalized absolute square of the response; namely
V(@) 12, of the master harmonic oscillator. Indeed, these loss factors are by all means
intensive, by no means extensive, properties of the energetics of the complex.
Investigation of the extensive properties of the complex are deferred to subsequent reports.
Again, it is recalled that the relationship between the effective loss factor 7] e1(@) and the
prevailing loss factor 75, (@) is largely significant in the vicinity of the insitu resonance
frequencies of the master harmonic oscillator. The plural designation of the resonance
frequencies is predicated on a phenomenon that couplings, among harmonic oscillators of
like and nearly like resonance frequencies, brings about a removal of the degeneracies

among these resonance frequencies; this removal yields a multiplicity of resonance
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frequencies for the complex as a whole. (The “resonance frequency” in this context include
“anti-resonance frequencies” as well [1].) This multiplicity is derived from the requirement
that in the vicinity and at these resonance frequencies | ¥;; (@)1, as stated in Eq. (19),
exhibits ridges and associated peaks, as well as, valleys and associated nadirs. The range
and distribution of this multiplicity of resonance frequencies are dependent on the nature of
the couplings and their strengths [1]. A frequency within that range is designated (&, ).

In summary and in this vein

77p1(a)) 1

Z(@) = [Fy@]™; ny @) p =12 [1+(@, /0Tt Re{Z (@)} ;
() En (@)™

Na(@) £ Np@) 3 8@ =1, 0=0; oy < O Oy . @

The lower limit, in the last of Eq. (31), is set when the masses in the satellite harmonic
oscillators respond with the same velocity as that of the master harmonic oscillator; the low
setting is thus commensurate with the resonance frequency of an isolated harmonic
oscillator; as defined in Section IVA. The upper limit, in the last of Eq. (31), is set when
the masses in the satellite harmonic oscillators are held motionless; the upper setting is thus
commensurate with the resonance of a complex composed of a master harmonic oscillator
that is coupled to blocked satellite harmonic oscillators; this complex is defined in

Section IVB. [cf. Eq. (18).] Again, Eq. (31) states that in the presence of couplings
between the master harmonic oscillator and the satellite harmonic oscillators, the prevailing
loss factor 15, (o) tends to exaggerate the effective loss factor 7],,(@) of the complex, at
least, in the vicinity of the resonance frequency (@) of the master harmonic oscillator.
Moreover, the exaggeration is most severe when most of the stored energy in the complex

resides in the couplings and in the satellite harmonic oscillators, so that, the stored energy
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ratio {(@), stated in Eq. (29a), substantially exceeds unity. This statement is not
surprising. Comparing Eq. (23) with Eq. (28a) indicates that in the definition of 7 pl(a))
only the normalized stored kinetic energy in the master harmonic oscillator is accounted for
among the stored energies in the complex. Doubling the stored kinetic energy in the
definition of 7, (), in an effort to account for the stored potential energy in the master
harmonic oscillator, does not alleviate this accounting deficiency. Accounting only for the
stored energy in the master harmonic oscillator is unsatisfactory in a complex in which the
couplings drive satellite harmonic oscillators, notwithstanding that the master harmonic
oscillator alone is externally driven. The exception occurs only when the master harmonic
oscillator is in isolation. It emerges, therefore, that with this exception acknowledged and
discussed in Section IV, the use of the prevailing loss factor 7] pl(a)) as a bonafide loss
factor may often raise the question: Where did the energy go? This issue becomes
particularly relevant in those situations for which the stored energy ratio

{(w) [= £ si(@)/ 21 ()] is large compared with unity. It is explained herein that the
energy did not go anywhere, it is merely and mistakenly discounted. In this sense and
although they appear related, the prevailing loss factor 7] pl((o) and the effective loss factor
nel(a)) are not, in general, consistent; the latter loss factor being the real one.
Nonetheless, a number of publications, dealing with structural fuzzies, employ the
prevailing loss factor for real [9-12].

To further analyze the relationship and the contrast between the prevailing and the
effective loss factors, a more explicit definition of the quantities and parameters that
describe the complex is required. It may also be useful, at this stage, to sacrifice a little in
generality to gain much simplicity in the analytical descriptions and their manipulations.
For this purpose subsequent consideration is focused on a complex in which the satellite
harmonic oscillators are not coupled to each other. In this complex, couplings, if any, are
only between the master harmonic oscillator and the individual satellite harmonic

oscillators.
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VI. THE PREVAILING LOSS FACTOR FOR A COMPLEX IN WHICH THE
SATELLITE HARMONIC OSCILLATORS ARE UNCOUPLED TO EACH OTHER.
For this complex certain elements in the impedance matrix are equal to zero.
Indeed, these zero elements, as well as those that survive, can be identified by multiplying
all elements by the factor [ i t () nt 5, 1-6 ji )]; e.g., in Eq. (4) a replacement

needs to be implemented in the form

Z]Ti(a)) 'Z_]Ti(a))
{}i(w) - z};(w) [(6; + (8, +8,) A=) . (32)
Zﬁ(w) Zﬁ(w)

Substituting Eq. (32) in Eq. (1b) and then deriving Eq. (6), one finds a highly simplified

form for the insitu normalized admittance ¥;,(@) for the master harmonic oscillator

N
Ty(@) = [(Zy(@) + Y, Z;() @l , (33)
Jj=2
where
Cj(@) = V(@) ()] = -[Z; (@) Z;(o)] . (34)

Again, clarity can be gained, without too much loss in generality, by suppressing
the mass and gyroscopic coupling parameters. Accordingly, the parameters M ji 1-6 ji)

and G ji(w) a-6 ji) are set equal to zero in Eq. (4). With this suppression
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J #E . (35)
Substituting Eq. (35) in Eq. (33) and rearranging terms and factors, one derives

T = {IZn@) + Zy@)) ' Zj) = [Zn(o) + Zy ()] ;

N
Za@) = Y, Z ) Z@) = Zy@)Z;) [Zje) + Z; @],
j=2

(36)

where ch () is the normalized impedance contributed to the master harmonic oscillator
by the coupled (j)th satellite harmonic oscillator and its coupling to that master harmonic
oscillator. It is remarkable that Z ¢j is constructed of merely the parallel cgmbination of the
normalized impedance Z j]_-(a)) of the satellite harmonic oscillator in isolation with its
normalized coupling impedance Zl; (@) to the master harmonic oscillator. Also
remarkable is that the first term in the normalized impedance Zl (@) is the normalized
impedance Z;;(®) of the master harmonic oscillator in isolation. The thorough
investigation of this structure of Z(co) is deferred; in this report the concern is with
investigating the loss factors that this normalized impedance may harbor. From Eqs. (12),
(20) and (36), one finds that the prevailing loss factor 7] pl(w) may be expressed in the

form
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N
Mn(@) = [Tlfn(w) + (@] 5 Na(®) = Z Tlpj((l)) ;
j=2

[ Z;@)F Re{Zj(@)} + 1Z(@) Re(Zz@N [ Zy@F T,
37

where 7710;1((0) is the contribution of the master harmonic oscillator to its own prevailing
loss factor and 7 pj () is the contribution of the coupled (j)th satellite harmonic oscillator
and its coupling to the prevailing loss factor 7] pl(a)). Since 17, () is positive definite,
the attachment of each satellite harmonic oscillator to the master harmonic oscillator always
increase the prevailing loss factor 7]p, (), initially from its threshold at 7110;1 (w).
Investigating, Egs. (36) and (37) in particular, one recognizes immediately that provided
the individual loss factors (1] i ) and (1], j ) are reasonably small compared with unity, the
contribution N pj (w) to the prevailing loss factor 7] pl(a)) by the (j)th satellite harmonic
oscillator is significant in a frequency band that is (@ 0joj )wide and is centered about the
resonance frequency (@ of ). The resonance frequency (@ oj) and the resonance

.) of the (j)th harmonic oscillator are defined by the insitu

o]
normalized impedance Z ii (). This normalized impedance is that of the (j)th satellite

frequency span (a)ojn

harmonic oscillator with the master harmonic oscillator blocked. In contrast to the
normalized impedance Z o (@) defined in Eq. (36), the normalized impedance Z i (W) is
constructed of merely the series combination of the normalized impedance ZJ; (w) of the
satellite harmonic oscillator in isolation with its normalized coupling impedance 21_] (w) to
the master harmonic oscillator, nothwithstanding that Z i () is an inverse factor in

Z ¢ (). At, and in the vicinity of the resonance in this (j)th harmonic oscillator, the

following relationship needs to be satisfied:
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[cf. Eq. (12b).] Equation (38), as Eqgs. (4) and (35) attest, defines in turn
(Mmy) = (@5 105)° N+ (@510, ;15
M; = (M;/My); of = (K5 IMy) 5 oy = K/ My) | (3%)
My =[]0, + (@;/0,)"] . (39b)

Defining a span function U (@, @, n;j); e.g.

{Ulw-a, (1-ny)] - Ulw -, (1+my)1};
77,01' = (7701"'7701'); Mot = nlo)l (woj ) (40)

where U is the unit step function, Eq. (37) may be approximated in the more explicit form

Np1(@) = [Mp1(@) + Mey(@)]

N

Ne(@) = 2 Tlpj(woj) Uj(co, @i 77'0]')§
in
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Ri(@y) = (@;/0,)" [L+ @ /0;)" 1y myl MM™ . @

Clearly, R j (w of ) is directly dependent on the presence of couplings between the satellite
harmonic oscillators and the master harmonic oscillator. In the absence of such couplings,
R i (o oj) is identically equal to zero and the terms that are summed over in Eq. (41) are all
zeros and Eq. (12a) is appropriately recovered. On the other hand and just as clearly, if
couplings are present, a resonating satellite harmonic oscillator, as defined in Eq. (38),
which possesses a loss factor (7] 0j ), as defined in Eq. (39), that approaches zero
contributes singularly to the prevailing loss factor. This singularity in the contribution of a
single harmonic oscillator is addressed in some publications [9-12]. In particular, if the

span (@ ) of the (j)th satellite harmonic oscillator harbors but a single satellite

’
o Moj

harmonic oscillator, Eq. (41) becomes
npl(w) = [77;1((0) + N (@)] ncl(woj) = npj(woj);
Tlpj(woj) = [Rj(woj)/(noj)] , 42)

and the potential singularity in the contribution of that satellite harmonic oscillator assumes
a more obvious connotation. The satellite harmonic oscillators that resonate within the span
that is defined by U i constitute the (j)th cell of satellite harmonic oscillators. Then

Eq. (42) is said to be valid for a (j)th cell that contains a single satellite harmonic
oscillator. It is noted, in passing, that in a (j)th cell that hosts zero satellite harmonic
oscillators, 7). (@ oj) = 0. Since it is prescribed that the resonating harmonic oscillators

contribute dominantly, the influence of the non-resonant harmonic oscillators is assumed to
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be negligible and hence the validity of the statement just made. The barren cells cover, by
definition, frequency ranges that lie outside the resonance frequency spans of hosting cells.
On the other hand, cells may exist in which a number of satellite harmonic
oscillators may be hosted; within the span that is defined by U i@ number of resonating
harmonic oscillators are contained. The resonances of these satellite harmonic oscillators
are in reference to a blocked master harmonic oscillator. These resonating hosted harmonic
oscillators contribute prominently and collectively to the portion 7]¢; (@) of the prevailing
loss factor as stated in the sum in Eq. (41). In this connection, there are treatises that claim
that the collective contribution to the prevailing loss factor 7]¢; (@) of satellite harmonic
oscillators that are coupled and hosted by a well endowed cell, is independent of the loss
factors 7 oj that are associated with these individual satellite harmonic oscillators. It is
implied, thereby, that even if individual satellite harmonic oscillators possess loss factors
that in a single occupancy would contribute singularly to the prevailing loss factor, ina
multiple occupancy, these singular contributions are suppressed [9-12]. The measure of
multiplicity is seldom defined beyond the designation of “many, many, many” and the
notion of a cell of satellite harmonic oscillators is rarely referenced [9]. In the mid-sixties,
when SEA was initiated and fostered, it was premised that when one deals with a single
isolated dynamic system, the behavior is simply accounted for; when one deals with two
interacting dynamic systems, accounting for the joint behavior is troublesome. However,
when one deals with three or more interacting dynamic systems, one averts difficulties by
using statistics. Is that what is meant by (many)3? To answer this question, let the factors
Mpj (0 oj ), in the terms of the sum in Eq. (41), be represented by a “typical” factor to
which a weight of (A jN ) is assigned, where (A jN ) is the number of satellite harmonic
oscillators that significantly contribute to the sum within the resonance frequency span that
is defined by the span function U i namely, the contributions of those resonating satellite
harmonic oscillators that reside in the (j)th cell. With this representation, Eq. (41) may

be approximated in the form
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(@) = M%(@) + M@ ;@) = (@) (A;N) 5
(npj(ﬁoj)) = [(Rj(&)—bj)) /<770j>] ) (43)

where the angular brackets imply the averaging of the enclosed quantity, (@ oj ) is the
center frequency of the (j)th cell and a flimsy, but probable, form of averaging procedure
is implemented; e.g., (R 4 (@ of )) and (N oj) are the implied averages of R; (0 oj) and
(n oj) over the values that they have in the (j)th cell and, yet, it is the product of these
quantities that is being averaged. More rigorous averaging procedures and factorizations
may be contemplated; however, those lie beyond the intended scope for this report. [Itis
recognized that adjacent cells may host some of the same resonating satellite harmonic
oscillators‘. In this manner the center frequency (@ of ) may assume, in certain frequency
ranges, a quasi-continuous character. Some aspects of these and other considerations are
to be assessed, in conjunction with computations, in companion reports.] If (A jN ) is
greater than two, which according to the original premise is an adequate condition for

applying statistics, one finds that

<nj(woj)> ((00]') <770j> ':(AjN) > 2, (44)
where {(n i (@ o )) is the modal density of the (j)th cell of satellite harmonic oscillators

and it is recognized that Eq. (44), by definition, satisfies the criterion of modal overlap

in the (j)th cell [1]. Substituting Eq. (44) in Eq. (43), yields
Mp@)) = [Ny (@) + (N (@] 5

(Net (50]' ) = (Rj (50]' ) (50]') <nj (w_oj ) . (45)
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Equation (45), which apriori satisfies the modal overlap condition, purports to be

independent of the loss factors (1] oj) of the individual sateilite harmonic oscillators.
Purports because Eq. (45) is not actually independent of the loss factor (7] of ). Through
Eq. (44), (n oj> is merely called by another name. The renaming cannot hide the implied
presence of the inverse of this averaged loss factor in its full regalia, in Eq. (45).
[cf. Eq. (43).] Equation (44) declares that if (,;) — 0, [(@;) (n;(@;))] must
become (ma.ny)3 to maintain the inequality stated in this equation, notwithstanding that if
some of the loss factors (7] oj) approach zero, the convergence of terms in Eq. (41) to
those in Eq. (43) are in question. The (many)3 dilemma and its connotation are, thereby,
exposed although they are not rigorously resolved.

It emerges, therefore, that the higher value for the prevailing loss factor 7], (@) is
more reflective of the inhibition of the stored energy in the master harmonic oscillator, as a
fraction of the stored energy in the complex as a whole, than it is reflective of the efficiency
by which the external input power is dissipated. Indeed, the higher contribution of the
couplings to 7 p1(@) occurs at frequencies at which the satellite harmonic oscillators in a
cell are at resonance under conditions that the master harmonic oscillator is essentially
blocked. These frequencies are precisely those at which the stored energy ratio {(w),
stated in Eq. (29a), attains values that substantially exceed unity. The prevailing loss
factor 1) 5 (@), as such, hardly addresses the efficiency with which the normalized external
input power is dissipated once it entered the complex. Itis the effective loss factor 1), (@)

that addresses the efficiency of this dissipation; 7, (@) is, therefore, the real loss factor.
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VIL. THE EFFECTIVE LOSS FACTOR FOR A COMPLEX IN WHICH THE
SATELLITE HARMONIC OSCILLATORS ARE UNCOUPLED TO EACH OTHER.
To determine the effective loss factor 1, (@), in addition to the determination ot
the prevailing loss factor 7 pl((o), the determination of the normalized stored energy
£ n((o) in the complex is also needed. [cf. Eq. (28).] Imposing the condition stated in
Egs. (32), (34) and (35) on Egs. (25) and (26), simplified forms for the normalized

stored energy and its terms are derived
-— — — — N -—
£, = £(@) + £4(®) ; Eq(@) = Y Eg(®@);
j=2

Egj(0) = [gj(@) + & )], (46)

Ej(@) = 1/2) 1Z (@) Z(@)P [M; + (@;/0)°];

£ (@) = 1/2) 1Z;@) Zy@)f (o;/0) ;  j22. @)

1j

Substituting Eq. (47) in Eq. (46), one obtains

E5(@) = U/2) IZ;(@)F M} + (@;/0)*] +

1 Zi (@) (0;/0)*) [Z;@)PT . (48)
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[cf. Eq. (36).] Utilizing Egs. (39) through (41), one can show that at, and in the vicinity
of the resonances, as defined in Eq. (38), Egs. (46) through (48) assume yet simpler and

more explicit forms

e, (@) = (0 + £ ,@); £ (@) = U/2) [l + (0 /0)'];

—_ N -—

gq (W) = Z —ésj(moj) Uj(a), @i n;j) ) (49)
j=2

where

85 (0y) = [R}(04:)/(Mg)*] 5

= (0,; /0, [A+1%) + A12) {(@; /o))" 15 = (@ /0,)* n)] ()™ .
. J ] J J] J JJ J ] J J]
(50)

In particular, if the span (@ oj n(')j) of the (j)th harmonic oscillator harbors but a single

satellite harmonic oscillator, Eq. (49) becomes
= _ = = . = _ 2 .
g, @) = g (@) + g,(0); g(ny,) = 1/2) [1 + (@, /04)°1 5

B (0,) = Egy);:  Eg(@y) = [Ri(@y)/(ny)"] . (51)

33




[cf. Eq. (42).] Moreover, following an analogous statistical procedure with regard to

Eq. (49) that is employed to transit from Eq. (41) to Eq. (43), one obtains
E (@) = E@ + ¢ (@); E@ =W/ 0+ @u/0)]];
(&, @) = (£;@,)) (A;N);
(&3 @y = KR @) N’ - (52)

It is observed that except for terms that are dependent on the individual loss factors
o ’ .
(17]-]-) and (nlj ), R]- (a)oj), as stated in Eq. (41), and Rj (a)oj ), as stated in Eq. (50),
are equal. Indeed, it can be argued that as long as the individual loss factors (7] jj) and
(m, j) are at least an order of magnitude smaller than unity, the terms that are so dependent
may be neglected and then

Ri(@y) =(@j/0,)" (M)~ = Rj(@y) . (53)

0j J

From Egs. (17), (28), (42) and (51) and under the approximation that is Eq. (53), the
effective loss factor 1, (@ of ), for a (j)th cell that harbors a single satellite harmonic

oscillator, may be expressed in the form
0 -1
77e1((00j) = [Tlel(a)oj) + nojCj(woj)] [+ Cj(woj)] . (54)

The quantity { j (w oj) is the ratio of the normalized energy € 5 (w o] ) that is stored in the

singly occupied (j)th cell and in the coupling to the normalized energy £, (@ oj) that is
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stored in the master harmonic oscillator. Both stored energies are evaluated at the

resonance frequency (@ of ); ie.

£i(@y) = [ (@) E(@p)] = [Egj (@) &1(@)] - (55)

Similarly, from Eqs. (17), (28), (43) and (52) and under the approximation that is
Eq. (53), the effective loss factor 1, (@ of ), for a (j)th cell that harbors a number

(A jN ) of satellite harmonic oscillators, may be expressed in the form

(ﬂel(aoj» = [1731(550]-) + <n0j> (Cj(a)-oj»] 1+ (gj(aoj»]_l . (56)

The quantity (¢ i (@ oj )) is the ratio of the normalized energy (.?;"s1 (50]- )) thatis stored in a
multiply occupied (j)th cell and in the couplings to the normalized energy §1(50j) that is
stored in the master harmonic oscillator. Both stored energies are evaluated at the centered

frequency (50]-) of the (j)th cell; ie.

;@) = KEq@oy)E@ )] = (et @p)) @)1, GT)

where (£, (@,;)) and £,(@,;) are stated in Eq. (52). [cf. Egs. (51) and (55).]
Equations (54) and (56) are reminiscent of an expression for the effective loss
factor of a structural fuzzy derived via SEA [6]. The resemblance between Egs. (54) and
(56) in this report and Eq. (17a) of Reference 6, is clearly not accidental. All express the
same concept under different implied conditions; e.g., in Eq. (54) one satellite harmonic
oscillator versus several in Eq. (56). In Eq. (17a) of Reference 6, it is implied that, in
addition, there may be included in the formalism also a number of resonating master
harmonic oscillators that reside with a corresponding cell. Nonetheless, many of the

discussions, interpretations and conclusions presented in Reference 6 are relevant to
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Egs. (54) and (56). Thus, for example, Eq. (54) indicates that the effective loss factor
Ne1(@ oj ) can be either increased or decreased from 7731 (w oj ) by coupling the master
harmonic oscillator to a satellite harmonic oscillator the loss factor (77 oj) of which is either
higher or lower than 1, (@ of ), respectively. Other examples can be similarly treated and
many will be in companion reports. In these companion reports, in addition, extensions
will be made to include couplings among the satellite oscillators and to couplings that
possess mass and gyroscopic parameters. The extensions will be aided by computational
experiments. To these companion reports, this report serves as a mere introduction and as
a useful analytical guide.

A final remark may be in order: In the formalism of the loss factors pursued in this
report, it becomes clear that in seeking to establish design criteria for the loss factors of a
complex, it is not merely the maximization of the values of the loss factors that is of
significance. The placement of these maximal loss factors at frequencies where they are
most useful is also a subject for consideration. Often these frequencies are commensurate
with the insitu resonance frequencies of the complex and these frequencies are not
necessarily located where the highest values for the prevailing and/or the effective loss
factors reside. These kinds of considerations will prominently feature in the companion

reports to come.
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